In this paper, we consider a problem with dynamical boundary conditions for a hyperbolic equation.The dynamical boundary condition is a convenient method to take into account the presence of certain damper when fixing the end of a string or a beam.Problems with dynamical boundary conditions containing first-order derivatives with respect to both space and time variables are pabst blue ribbon chandelier not self-ajoint, that complicates solution by spectral analysis.
However, these difficulties can be overcome by a method proposed in the paper.The main tool to prove the existence of the unique weak solution to shades eq driftwood the problem is the priori estimatesin Sobolev spaces.As a particular example of the wave equation is considered.
The exact solution of a problem with dynamical condition is obtained.